KeyTrack key tracker
key = KeyTrack.kr(chain, keydecay=2.0, chromadecay= 1.0)
chain- [fft] Audio input to track. This must have been pre-analysed by a 4096 size FFT. No other FFT sizes are valid except as noted below.
//With standard hop of half FFT size = 2048 samples
b = Buffer.alloc(s,4096,1); //for sampling rates 44100 and 48000
//b = Buffer.alloc(s,8192,1); //for sampling rates 88200 and 96000
keydecay- [sk] Number of seconds for the influence of a window on the final key decision to decay by 40dB (to 0.01 its original value)
chromaleak- [sk] Each frame, the chroma values are set to the previous value multiplied by the chromadecay. 0.0 will start each frame afresh with no memory.
A (12TET major/minor) key tracker based on a pitch class profile of energy across FFT bins and matching this to templates for major and minor scales in all transpositions. It assumes a 440 Hz concert A reference. Output is 0-11 C major to B major, 12-23 C minor to B minor
//The following files are test materials on my machine; you will subsitute your own filenames here
//A major
d=Buffer.read(s,"/Volumes/data/stevebeattrack/samples/100.wav");
//F major; hard to track!
d=Buffer.read(s,"/Volumes/data/stevebeattrack/samples/115.wav");
//straight forward since no transients; training set from MIREX2006
//01= A major
//57 = b minor
//78 e minor
//08 Bb major
d=Buffer.read(s,"/Users/nickcollins/Desktop/ML/training_wav/78.wav")
b = Buffer.alloc(s,4096,1); //for sampling rates 44100 and 48000
(
{
var in, fft, resample;
var key, transientdetection;
in= PlayBuf.ar(1,d,BufRateScale.kr(d),1,0,1);
fft = FFT(b, in);
key=KeyTrack.kr(fft, 2.0, 0.5);
key.poll;
Out.ar(0,Pan2.ar(in));
}.play
)
//alternating major and minor chords as a test
(
{
var in, fft, resample;
var key, transientdetection;
in= Mix(SinOsc.ar((60+[0,MouseX.kr(3,4).round(1),7]).midicps,0,0.1));
//major dom 7 and minor 7; major keys preferred here
//in= Mix(SinOsc.ar((60+(MouseY.kr(0,11).round(1.0))+[0,MouseX.kr(3,4).round(1),7, 10]).midicps,0,0.1));
fft = FFT(b, in);
key=KeyTrack.kr(fft);
key.poll;
Out.ar(0,Pan2.ar(in));
}.play
)
//Nice to hear what KeyTrack thinks:
d=Buffer.read(s,"/Users/nickcollins/Desktop/ML/training_wav/78.wav")
b = Buffer.alloc(s,4096,1); //for sampling rates 44100 and 48000
(
{
var in, fft, resample, chord, rootnote, sympath;
var key, transientdetection;
in= PlayBuf.ar(1,d,BufRateScale.kr(d),1,0,1);
fft = FFT(b, in);
key=KeyTrack.kr(fft, 2.0, 0.5);
key.poll;
key = Median.kr(101, key); // Remove outlier wibbles
chord = if(key<12, #[0,4,7], #[0,3,7]);
rootnote = if(key<12, key, key-12) + 60;
sympath = SinOsc.ar((rootnote + chord).midicps, 0, 0.4).mean;
Out.ar(0,Pan2.ar(in, -0.5) + Pan2.ar(sympath, 0.5));
}.play
)
//Research Notes:
//See the MIREX2006 audio key tracking competition and Emilia Gomez's PhD thesis, Tonal Description of Music Audio Signals
//The following code was used to create the datasets for the UGen, and would be the basis of extensions
//Need one set of bin data for 44100 and one for 48000
//KeyTrack calculations, need to make arrays of FFT bins and weights for each chromatic tone.
//greater resolution, 4096 FFT, avoid lower octaves, too messy there
//60*6*2 output arrays
(
var fftN, fftBins, binsize;
var midinotes;
var sr;
var wtlist, binlist;
sr = 48000; //44100;
fftN=4096;
fftBins=fftN.div(2);
binsize=sr/fftN;
midinotes= (33..92); //60 notes, 55 Hz up to 1661.2187903198 Hz
wtlist=List[];
binlist=List[];
//for each note have six harmonic locations
midinotes.do{|note|
var freq, whichbin, lowerbin, prop;
freq= note.midicps;
6.do{|j|
var partialfreq, partialamp;
partialamp= 1.0/(j+1);
partialfreq= freq*(j+1);
whichbin= partialfreq/binsize;
lowerbin= whichbin.asInteger;
prop= 1.0-(whichbin-lowerbin);
binlist.add(lowerbin).add(lowerbin+1);
wtlist.add(prop*partialamp).add((1.0-prop)*partialamp);
};
};
Post << (binlist) << nl<< nl;
Post << (wtlist) << nl<< nl;
binlist.size.postln;
wtlist.size.postln;
)