Scale
Inherits from: Object
Represents a musical scale. It supports arbitrary octave divisions and ratios, and (in conjunction with Tuning ) can generate pitch information in various ways, including as input to Patterns.
s.boot;
a = Scale.major;
a.degrees; // [ 0, 2, 4, 5, 7, 9, 11 ]
a.semitones; // [ 0, 2, 4, 5, 7, 9, 11 ]
a.cents; // [ 0, 200, 300, 500, 700, 900, 1100 ]
a.ratios; // [ 1, 1.1224620483089, 1.2599210498937, 1.3348398541685, etc. ]
Pbind(\scale, a, \degree, Pseq((0..7) ++ (6..0) ++ [\rest], 1), \dur, 0.25).play;
// use non-standard tuning
a.tuning_(\just);
a.degrees; // no change; degrees are independent of tuning
a.semitones; // [ 0, 2.0391000173077, 3.1564128700055, 4.9804499913461, etc. ]
a.ratios.collect(_.round(0.001)); // [ 1, 1.125, 1.2, 1.333, 1.5, 1.667, 1.875 ]
Pbind(\scale, a, \degree, Pseq((0..7) ++ (6..0) ++ [\rest], 1), \dur, 0.25).play;
Creation
*major, *minor, *dorian, *chromatic, *todi, *hijaz, *partch_o1, etc.
Creates a scale from the library stored in ScaleInfo. Each scale comes with an appropriate default Tuning, but alternate tunings can be specified at creation time:
Scale.phrygian(\pythagorean)
If the tuning size does not match the scale's pitchesPerOctave, a warning will be thrown, and the scale will use its default tuning.
For a complete list of available scales, execute
Scale.directory
*choose(size, pitchesPerOctave)
Creates a random scale from the library, constrained by size and pitchsPerOctave if desired.
Scale.choose; // could be anything
Scale.choose(7); // will be a seven-note scale in its default tuning (could be any)
Scale.choose(7, 12); // will be a seven-note scale in a twelve-tone tuning (usually ET!2)
// Random seven-note scale in random twelve-tone tuning
a = Scale.choose(7, 12).tuning_(Tuning.choose(12));
a.tuning.name;
*new(degrees, pitchesPerOctave, descDegrees, tuning, name)
Creates a Scale from scratch. degrees should be an array of Integers or scale name. If pitchesPerOctave is nil, will guess the most appropriate number based on degrees. tuning can be an instance of Tuning or a symbol; if nil, will be equal temperament of pitchesPerOctave. Specify descDegrees if the Scale should play differently when descending than when ascending; otherwise it should be nil.
Scale.new(#[0, 1, 3, 6, 8, 10, 11], name: "My ET12"); // will be in ET12
Scale.new(#[0, 3, 7, 10, 15, 19, 22], name: "My Quarter-Tone"); // will be in ET24
Scale.new(#[0, 6, 17, 21, 30, 39], 43, \partch, "My Partch");
Instance Methods
tuning_(tuning)
Sets the tuning of the Scale. tuning argument can be either an instance of Tuning or a symbol matching a library tuning.
semitones
Returns a tuned array of semitone values. as(Array) is equivalent; as(List) returns it as a list, etc.
cents
Returns a tuned array of cent values.
ratios
Returns a tuned array of ratios.
as(LocalBuf)
Useful for server-side work.
(
r = {
var scale = Scale.choose.postln;
SinOsc.ar(
(
DegreeToKey.kr(
scale.as(LocalBuf),
MouseX.kr(0,15), // mouse indexes into scale
scale.stepsPerOctave,
1, // mul = 1
60 // offset by 72 notes
)
+ LFNoise1.kr([3,3], 0.04) // add some low freq stereo detuning
).midicps, // convert midi notes to hertz
0,
0.25
)
}.play;
)
r.free;
size
Returns the length of the scale.
Scale.ionian.size; // 7
Scale.minorPentatonic.size; // 5
Scale.ajam.size; // 7
Scale.partch_o1.size; // 6
pitchesPerOctave
Returns the size of the pitch class set from which the tuning is drawn.
Scale.ionian.pitchesPerOctave; // 12
Scale.minorPentatonic.pitchesPerOctave; // 12
Scale.ajam.pitchesPerOctave; // 24--this is a quarter-tone scale
Scale.partch_o1.pitchesPerOctave; // 43
stepsPerOctave
Usually 12, but may be different if the current tuning has a stretched or compressed octave. Needed for degreeToKey.
Scale.new((0..14), 15, tuning: \wcAlpha).stepsPerOctave; // ~ 11.7
Scale.new(#[0, 3, 6, 9, 12], 13, tuning: \bp).stepsPerOctave; // ~ 19.02
but note:
Scale.ajam.stepsPerOctave; // 12 -- quarter-tone scales have normal octaves
at, wrapAt
These access the array generated by semitones.
a = Scale.major;
a.wrapAt(4); // 7
a.wrapAt(5); // 9
a.wrapAt(6); // 11
a.wrapAt(7); // 0
degreeToFreq(degree, rootFreq, octave)
Returns a frequency based on current tuning and rootFreq argument.
Scale.major.degreeToFreq(2, 60.midicps, 1); // 659.25511...
Scale.major(\just).degreeToFreq(2, 60.midicps, 1); // 654.06391...
degreeToRatio(degree, octave)
Returns a ratio based on current tuning.
Scale.major.degreeToRatio(2, 1).round(0.001); // 2.52
Scale.major(\just).degreeToRatio(2, 1).round(0.001); // 2.5
Examples
(
s.waitForBoot({
a = Scale.ionian;
p = Pbind(
\degree, Pseq([0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, \rest], inf),
\scale, Pfunc({ a }, inf),
\dur, 0.25
);
q = p.play;
})
)
// change scale
a = Scale.phrygian;
// change tuning
a.tuning_(\just);
// can also set tuning at creation time
a = Scale.ionian(\pythagorean);
// if you use a tuning with the wrong number of pitches per octave,
// you get a warning and the scale reverts to default tuning
a.tuning_(\partch);
// random scale
(
a = Scale.choose(7, 12);
[a.name, a.tuning.name].postln;
)
(
// or make up your own arbitrary scales and tunings
a = Scale.new(
#[0, 2, 4, 5, 7, 9, 10],
12,
Tuning.new([0, 0.8, 2.1, 3, 4.05, 5.2, 6, 6.75, 8.3, 9, 10.08, 11.5]),
"Custom"
);
)
// tuning has its own class
t = Tuning.werckmeister;
a = Scale.lydian(t);
q.stop;
// getting info
a.name;
a.degrees;
a.semitones;
a.ratios;
a.tuning.name;
a.tuning.semitones;
a.tuning.ratios;
// cmd-J to see scale and tuning dictionaries in full
ScaleInfo
TuningInfo
// for ascending/descending scales, use Pavaroh
(
Pbind(\note, Pavaroh(
Pseq([0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, \rest], 2),
Scale.melodicMinor,
Scale.melodicMinorDesc
),
\dur, 0.25
).play;
)