proxy space examples
Overview: JITLib
see also: ProxySpace
preparing the environment
(
s.boot;
p = ProxySpace.push(s);
)
playing and monitoring
// play some output to the hardware busses, this could be any audio rate key.
~out.play;
~out = { SinOsc.ar([400, 408] * 0.8, 0, 0.2) };
// replacing the node. the crossfade envelope is created internally.
~out = { SinOsc.ar([443, 600 - Rand(0,200)], 0, 0.2) };
~out = { Resonz.ar(Saw.ar(40 + [0,0.2], 1), [1200, 1600], 0.1) + SinOsc.ar(60 * [1,1.1],0,0.2) };
~out = { Pan2.ar(PinkNoise.ar(0.1), LFClipNoise.kr(2)) };
setting the node controls
~out = { arg rate = 2; Pan2.ar(PinkNoise.ar(0.1), LFClipNoise.kr(rate)) };
~out.set(\rate, 30);
~out = { arg rate = 2; Pan2.ar(Dust.ar(2000, 0.2), LFClipNoise.kr(rate)) };
~out.set(\rate, 2);
referencing between proxies
~lfo = { LFNoise2.kr(30, 300, 500) };
~out = { SinOsc.ar(~lfo.kr, 0, 0.15) };
~out = { SinOsc.ar(~lfo.kr * [1, 1.2], 0, 0.1) * Pulse.ar(~lfo.kr * [0.1, 0.125], 0.5) };
~lfo = { LFNoise1.kr(30, 40) + SinOsc.kr(0.1, 0, 200, 500) };
~out = { SinOsc.ar(~lfo.kr * [1, 1.2], 0, 0.1) };
~lfo = 410;
math
// unary operators
~lfo2 = { SinOsc.kr(0.5, 0, 600, 100) };
~lfo = ~lfo2.abs;
~lfo2 = { SinOsc.kr(1.3, 0, 600, 100) };
// binary operators
~lfo3 = { LFTri.kr(0.5, 0, 80, 300) };
~lfo = ~lfo2 + ~lfo3;
~lfo = ~lfo3;
~lfo = (~lfo3 / 50).sin * 200 + 500 * { LFTri.kr(~lfo.kr * 0.0015, 0, 0.1 * ~lfo3.kr / 90, 1) };
~lfo3 = { Mix(~lfo2.kr * [1, 1.2]) };
currentEnvironment.free; // free all node proxies
~out.stop; // free the playback synth.
waking up a network of proxies
// hit cmd-. to stop all nodes
// start again
~out.play;
feeding back (one buffer size delay)
~out = { SinOsc.ar([220, 330], ~out.ar(2).reverse * LFNoise2.kr(0.5, 4pi), 0.4) };
// there is no immediacy: hear the buffer size cycle
~out = { Impulse.ar(1 ! 2) + (~out.ar(2) * 0.99) };
// supercollider 'differential equations'
~out = { SinOsc.ar(Slope.ar(~out.ar) * MouseX.kr(1000, 18000, 1)) * 0.1 + SinOsc.ar(100, 0, 0.1) };
(
~out = { var z, zz;
z = Slope.ar(~out.ar);
zz = Slope.ar(z);
SinOsc.ar(Rand(300,410), z) *
SinOsc.ar(zz * 410)
* 0.1 + Decay2.ar(Pan2.ar(Dust.ar(600), MouseX.kr(-1,1)), 0.01, 0.05);
}
)
multiple control
(
~out = { arg freqOffest;
var ctl;
ctl = Control.names(\array).kr(Array.rand(8, 400, 1000));
Pan2.ar(Mix(SinOsc.ar(ctl + freqOffest, 0, 0.1 / 8)), LFNoise0.kr(2))
};
)
~out.setn(\array, Array.exprand(8, 400, 2000));
~out.set(\freqOffest, rrand(300,200));
~out.map(\freqOffest, ~lfo);
// a simpler short form for this is:
(
~out = { arg freqOffest=0, array = #[ 997, 777, 506, 553, 731, 891, 925, 580 ];
Pan2.ar(Mix(SinOsc.ar(array + freqOffest, 0, 0.1 / 8)), LFNoise0.kr(2))
};
)
mixing
~out1 = { SinOsc.ar(600, 0, 0.1) };
~out2 = { SinOsc.ar(500, 0, 0.1) };
~out3 = { SinOsc.ar(400, 0, 0.1) };
~out = ~out2 + ~out1 + ~out3;
~out = ~out1 + ~out2;
~out = ~out1;
// another way is:
~out = { SinOsc.ar(600, 0, 0.1) };
~out.add({ SinOsc.ar(500, 0, 0.1) });
~out.add({ SinOsc.ar(400, 0, 0.1) });
// or with direct access:
~out[1] = { SinOsc.ar(500 * 1.2, 0, 0.1) };
~out[2] = { SinOsc.ar(400 * 1.2, 0, 0.1) };
restoring / erasing
~out.free; // this frees the group, not the play synth x
~out.send; // resends all synths
~out.free;
~out.send(nil, 1); // this sends at index 1 only
~out.send;
// removing:
~out.removeLast;
~out.removeAt(0);
// cleaning up, freeing the bus:
~out.clear; // this neutralizes the proxy, and frees its bus
for more on the proxy slots see: jitlib_basic_concepts_03
garbage collecting
// often there are proxies playing that are not used anymore - this is good,
// because they might be used again at any time.
// this shows how to free unused proxies, such as ~out1, ~out2.
~out.play;
~out = { Pan2.ar(SinOsc.ar(~lfo.kr, 0, 0.2), sin(~lfo.kr / 10)) }; // ~lfo is kept, as its parents.
~lfo = { LFNoise2.kr(3, 160, 400) };
p.keysValuesDo { arg key, proxy; [key, proxy.isPlaying].postln };
p.reduce; // all monitoring proxies (in this case ~out) are kept running.
// equivalent: p.reduce(to: [~out]);
p.keysValuesDo { arg key, proxy; [key, proxy.isPlaying].postln };
// to remove everything else:
p.postln;
p.clean; // all monitoring proxies (in this case ~out) are kept.
p.postln;
// after ~out is stopped, it is removed, too:
~out.stop; // stop monitor
p.clean;
p.postln; // empty space.
execution order
// you can .play .kr or .ar also a name that is not yet used.
// the rate is guessed as far as possible. on this topic see also: [the_lazy_proxy]
~myOut.play; // play some key (audio rate is assumed)
// the rate is determined from the first access:
// like this ~lfo becomes control rate
~myOut = { SinOsc.ar(~freq.kr * 2, 0, 0.1) };
~freq = 900;
~freq = { SinOsc.kr(115, 0, 70, 220) }
~myOut = { SinOsc.ar(~otherFreq.ar * 2, 0, 0.1) };
~otherFreq = { SinOsc.ar(115, 0, 70, 220) };
currentEnvironment.clear; // clear every proxy in this environment and remove them. (same: p.clear)
setting the xfade time
~out.play;
~out.fadeTime = 4;
~out = { SinOsc.ar(Rand(800, 300.0) * [1,1.1], 0, 0.1) };
~out = { SinOsc.ar(Rand(800, 300.0) * [1,1.1], 0, 0.1) };
~out.fadeTime = 0.01;
~out = { SinOsc.ar(Rand(800, 300.0) * [1,1.1], 0, 0.1) };
~out = { SinOsc.ar(Rand(800, 300.0) * [1,1.1], 0, 0.1) };
~out.free(3); // release the synths and the group with a given fadeTime without changing proxy time
~out.stop; // stop monitor
setting and mapping arguments
~out.play;
~out = { arg freq=500, ffreq=120; SinOsc.ar(freq*[1,1.1], SinOsc.ar(ffreq, 0, pi), 0.2) };
~out.set(\freq, 400 + 100.rand2);
~out.set(\freq, 400 + 100.rand2);
~out.set(\ffreq, 30 + 20.rand2);
~out.unset(\freq, \ffreq); // remove the setting
~out.set(\ffreq, 30 + 10.rand2, \freq, 500 + 200.rand2);
// argument settings and mappings are applied to every new function
~out = { arg freq=100, ffreq=20; SinOsc.ar(freq, SinOsc.ar(SinOsc.ar(ffreq)*ffreq, 0, pi), 0.2) };
// mapping to other proxies
~lfo = { SinOsc.kr(0.3, 0, 80, 100) };
~out.map(\ffreq, ~lfo);
~out = { arg freq=300, ffreq=20; Pulse.ar(freq * [1, 1.1] + SinOsc.ar(ffreq, 0, freq), 0.3, 0.1) };
~out = { arg freq=300, ffreq=20; BPF.ar(LFSaw.ar(ffreq * [1, 1.1], 0, 1), freq, 0.2) };
~lfo = { FSinOsc.kr(0.3, 0, 30, 200) + FSinOsc.kr(10, 0, 10) };
~out = { arg freq=300, ffreq=20; SinOsc.ar(freq*[1,1.1], SinOsc.ar(ffreq, 0, pi), 0.1) };
// crossfaded setting and mapping: fadeTime is used
~out.fadeTime = 2;
~out.xset(\freq, 9000);
~out.xset(\freq, rrand(400, 700));
~lfo = { FSinOsc.kr(0.1, 0, 30, 100) };
~lfo2 = { LFClipNoise.kr(3, 100, 200) };
~lfo3 = StreamKrDur(Pseq([Prand([530, 600],1), 700, 400, 800, 500].scramble, inf) / 3, 0.2);
~out.xmap(\ffreq, ~lfo2);
~out.xmap(\ffreq, ~lfo);
~out.xmap(\ffreq, ~lfo3);
// argument rates: just like a synthdef has input 'rates' (like \ir or \tr), a nodeproxy control
// can be given a rate. this rate is used for each function passed into the proxy.
// trigger inputs
~out = { arg trig, dt=1; Decay2.kr(trig, 0.01, dt) * Mix(SinOsc.ar(7000 * [1.2, 1.3, 0.2])) }
~out.setRates(\trig, \tr);
// set the group, so the node proxy does not store the new value
~out.group.set(\trig, 0.1, \dt, 0.1);
~out.group.set(\trig, 0.4, \dt, 0.31);
~out.group.set(\trig, 0.13, \dt, 2);
// lagging controls:
~out.lag(\xfreq, 1); // equivalent to ~out.setRates(\xfreq, 1);
(
~out = { arg trig, dt=1, xfreq=700;
Decay2.kr(trig, 0.01, dt) * Mix(SinOsc.ar(xfreq * [1.2, 1.3, 0.2]))
};
)
~out.group.set(\trig, 0.1, \dt, 1, \xfreq, rrand(2000,9000));
~out.group.set(\trig, 0.1, \dt, 0.5, \xfreq, rrand(2000,9000));
~out.group.set(\trig, 0.1, \dt, 1, \xfreq, rrand(2000,9000));
// changing the lag, the synth is reconstructed with the new lag:
~out.lag(\xfreq, 0.01);
~out.group.set(\trig, 0.1, \dt, 1, \xfreq, rrand(2000,9000));
~out.group.set(\trig, 0.1, \dt, 1, \xfreq, rrand(2000,9000));
~out.group.set(\trig, 0.1, \dt, 1, \xfreq, rrand(2000,9000));
// removing the trig rate:
~out.setRates(\trig, nil);
// note that the same works with the i_ and the t_ arguments, just as it does in SynthDef
_____________________________________________________________________________________________
other possible inputs
using a synthdef as input
// for a more systematic overview see: [jitlib_fading]
// you have the responsibility for the right number of channels and output rate
// you have to supply an 'out' argument so it can be mapped to the right channel.
~out.play;
~out = SynthDef("w", { arg out=0; Out.ar(out,SinOsc.ar([Rand(430, 600), 600], 0, 0.2)) });
~out = SynthDef("w", { arg out=0; Out.ar(out,SinOsc.ar([Rand(430, 600), 500], 0, 0.2)) });
// if you supply a gate it fades in and out. evaluate this several times
(
~out = SynthDef("w", { arg out=0, gate=1.0;
Out.ar(out,
SinOsc.ar([Rand(430, 800), Rand(430, 800)], 0, 0.2)
* EnvGen.kr(Env.asr(1,1,1), gate, doneAction:2)
)
});
)
// once the SynthDef is sent, it can be assigned by name.
// using this method, a gate argument should be
// provided that releases the synth. (doneAction:2)
// this is very efficient, as the def is on the server already.
// if the synth def is in the synthdesc lib (.add) its gate is detected.
(
SynthDef("staub", { arg out, gate=1;
Out.ar(out,
Ringz.ar(Dust.ar(15), Rand(1, 3) * 3000*[1,1], 0.001)
* EnvGen.kr(Env.asr, gate, doneAction:2)
)
}).add;
)
~out = \staub;
// if you supply an envelope that frees itself, no bundle is sent to free it
(
~out = SynthDef("w", { arg out, lfo, f0=430;
Out.ar(out,
SinOsc.ar([Rand(f0, 800), Rand(f0, 800)]+lfo, 0, 0.2)
* EnvGen.kr(Env.perc(0.01, 0.03), doneAction:2)
)
});
)
~out.spawn;
~out.spawn([\f0, 5000]);
fork { 5.do { ~out.spawn([\f0, 5000 + 1000.0.rand]); 0.1.wait; } }
// when the synth description in the SynthDescLib is found for the symbol,
// the proxy can determine whether to release or to free the synth.
// so if there is no 'gate' arg provided and the def has a desc, the synth is
// freed and not released.
(
SynthDef("staub", { arg out;
Out.ar(out, Ringz.ar(WhiteNoise.ar(0.01), 1000 * [1,1], 0.001))
}).add; // store the synth def so it is added to the SynthDescLib
)
~out = \staub;
~out = \staub; // watching the synth count shows that the old synth is freed.
~out = 0; // now out plays continuous stream of zero.
~out = nil; // removes object and stops it.
using patterns
// example
(
SynthDef(\who, { arg amp=0.1, freq=440, detune=0, gate=1, out=0, ffreq=800;
var env;
env = Env.asr(0.01, amp, 0.5);
Out.ar(out, Pan2.ar(
Formant.ar(freq + detune, ffreq, 30, EnvGen.kr(env, gate, doneAction:2)), Rand(-1.0, 1.0))
)
}).add;
)
~out.play;
~out = Pbind(\instrument, \who, \freq, [600, 601], \ffreq, 800, \legato, 0.02);
// embed a control node proxy into an event pattern:
// this does not work for indirect assignment as \degree, \midinote, etc.,
// because there is calculations in the event! if needed, these can be done in the SynthDef.
~lfo = { SinOsc.kr(2, 0, 400, 700) };
~out = Pbind(\instrument, \who, \freq, 500, \ffreq, ~lfo, \legato, 0.02);
~lfo = { SinOsc.kr(SinOsc.kr(0.2, Rand(0,pi), 10, 10), 0, 400, 700) };
~lfo = { LFNoise1.kr(5, 1300, 1500) };
~lfo = { MouseX.kr(100, 5500, 1) };
(
~out = Pbind(
\instrument, \who,
\freq, Pseq([500, 380, 300],inf),
\legato, 0.1,
\ffreq, Pseq([~lfo, 100, ~lfo, 100, 300, 550], inf), // use it in a pattern
\dur, Pseq([1, 0.5, 0.75, 0.125]*0.4, inf)
);
)
// note that when you use a proxy within a non-event pattern it gets embedded as an object,
// so this functionality is still standard
// works only with control rate proxies. multichannel control rate proxies cause
// multichannel expansion of the events:
~lfoStereo = { LFNoise1.kr([1, 1], 1300, 1500) }; // 2 channel control rate proxy
~out = Pbind(\instrument, \who, \ffreq, ~lfoStereo, \legato, 0.02).trace;
~lfoStereo = { [MouseX.kr(100, 15500, 1), SinOsc.kr(SinOsc.kr(0.2, 0, 10, 10), 0, 400, 700)] }
// btw: setting the clock will cause the pattern to sync:
p.clock = TempoClock.default;
p.clock.tempo = 2.0;
p.clock.tempo = 1.0
// patterns also crossfade, if an \amp arg is defined in the synthdef:
// (evaluate a couple of times)
~out.fadeTime = 3.0;
(
~out = Pbind(
\instrument, \who,
\freq, Pshuf([500, 380, 200, 510, 390, 300, 300],inf) * rrand(1.0, 2.0),
\legato, 0.1,
\ffreq, Pshuf([~lfo, 100, ~lfo, 100, 300, 550], inf),
\dur, 0.125 * [1, 2, 3, 2/3].choose
);
)
using instruments and players
// pause and resume do not work yet.
// store an instrument
(
Instr(\test,
{ arg dens=520, ffreq=7000; Ringz.ar(Dust.ar(dens, [1,1] * 0.1), ffreq, 0.02) }
);
)
~out = Patch(\test, [10, rrand(5000, 8000)]);
~out.fadeTime = 3;
(
~out = InstrSpawner({ arg freq=1900,env,pan;
Pan2.ar(SinOsc.ar(freq, 0.5pi, 0.3) * EnvGen.kr(env, doneAction: 2), pan)
},[
Prand([1500, 700, 800, 3000] + 170.rand2, inf),
Env.perc(0.002,0.01),
Prand([-1,1],inf)
],0.125)
)
~out.clear;
// does not work (yet).
//~out.set(\dens, 120);
//~out.xset(\dens, 1030);
//~out.unmap(\ffreq);
//~out.set(\ffreq, 500);
_____________________________________________________________________________________________
client side routines
spawning
~out.play;
~out.awake = false; // allow sound object assignment without immediate sending
// putting an synthdef into the node proxy without playing it right away
// the synthdef has an envelope that frees by itself.
(
~out = SynthDef("a", { arg out=0, freq=800, pmf=1.0, pan;
var env, u;
env = EnvGen.kr(Env.perc(0.001, 0.04, 0.4),doneAction:2); // envelope
u = SinOsc.ar(freq * Rand(0.9, 1.1), SinOsc.ar(pmf, 0, pi), env);
Out.ar(out, Pan2.ar(u, pan))
})
);
// create a task to repeatedly send grains
(
t = Task.new({
loop({
// starts a synth with the current synthdef at index 0
~out.spawn([\pmf, [1, 20, 300].choose, \pan, [0, -1, 1].choose]);
[0.1, 0.01, 0.25].choose.wait;
})
});
)
t.start;
t.stop;
t.start;
// note: if you want to avoid using interpreter variables (single letter, like "t"),
// you can use Tdef for this. (see Tdef.help)
// set some argument
~out.set(\freq, 300);
~out.set(\freq, 600);
~out.map(\freq, ~lfo);
~lfo = { SinOsc.kr(0.1, 0, 3000, 4000) };
~lfo = { SinOsc.kr(0.1, 0, 600, 700) };
~lfo.add({ Trig.kr(Dust.kr(1), 0.1) * 3000 });
~lfo = 300;
// change the definition while going along
(
~out = SynthDef("a", { arg out, freq=800;
var env;
env = EnvGen.kr(Env.perc(0.01, 0.1, 0.3),doneAction:2);
Out.ar(out, Pulse.ar(freq * Rand([0.9,0.9], 1.1), 0.5, env) )
});
)
t.stop;
~out.awake = true; // don't forget this
// free all synths in this current ProxySpace
currentEnvironment.clear;
_____________________________________________________________________________________________
granular synthesis: efficient code
see also [jitlib_efficiency]
~out.play;
(
SynthDef("grain", { arg i_out = 0, pan;
var env;
env = EnvGen.kr(Env.perc(0.001, 0.003, 0.2),doneAction:2);
Out.ar(i_out, Pan2.ar(FSinOsc.ar(Rand(1000,10000)), pan) * env)
}).send(s);
)
// a target for the grains
~someInput.ar(2); // initialize to 2 channels audio
~out = ~someInput;
(
t = Task({
loop({
s.sendMsg("/s_new","grain",-1,0,0,
\i_out, ~someInput.index, // returns the bus index of the proxy
\pan, [1, 1, -1].choose * 0.2
);
[0.01, 0.02].choose.wait;
})
});
)
t.play;
// different filters;
~out.fadeTime = 1.0;
~out = { BPF.ar(~someInput.ar, MouseX.kr(100, 18000, 1), 0.1) };
~out = { CombL.ar(~someInput.ar * (LFNoise0.ar(2) > 0), 0.2, 0.2, MouseX.kr(0.1, 5, 1)) };
~out = { RLPF.ar(~someInput.ar, LFNoise1.kr(3, 1000, 1040), 0.05) };
t.stop;
// end
~out.stop;
currentEnvironment.clear;
ProxySpace.pop; // restore original environment
_____________________________________________________________________________________________
using multiple proxyspaces
can be done while the server is not running: with p.wakeUp or p.play
the environment can be played back.
// quit server:
s.quit;
// create two proxyspaces without a running server
(
p = ProxySpace(s);
q = ProxySpace(s);
p.use({
~out = { Resonz.ar(~in.ar, ~freq.kr, 0.01) };
~in = { WhiteNoise.ar(0.5) };
~freq = { LFNoise2.kr(1, 1000, 2000) };
});
q.use({
~in = { Dust.ar(20, 0.1) };
~out = { Resonz.ar(~in.ar * 450, ~freq.kr, 0.005) };
~freq = { LFNoise2.kr(1, 400, 2000) };
});
)
// wait for the booted server
s.boot;
// play the proxy at \out
p.play(\out);
q.play; // out is the default output
external access
q[\in][1] = { Impulse.ar(2, 0, 0.5) }; // adding a synth at index 1
// equivalent to
q.at(\in).put(1, { Impulse.ar(7, 0, 0.5) });
connecting two spaces (must be on one server)
(
q.use({
~freq = 100 + p[\freq] / 2;
})
)
recording output (see also: [RecNodeProxy])
r = p.record(\out, "proxySpace.aiff");
// start recording
r.unpause;
// pause recording
r.pause;
// stop recording
r.close;
push/pop
// make p the currentEnvironment
p.push;
~freq = 700;
~freq = 400;
~freq = { p.kr(\freq) + LFNoise1.kr(1, 200, 300) % 400 }; // feedback
~freq = 400;
p.pop; // restore environment
// make y the currentEnvironment
q.push;
~freq = 1000;
~in = { WhiteNoise.ar(0.01) };
q.pop; // restore environment
q.clear;
p.clear;
_____________________________________________________________________________________________
some more topics
nodeproxy with numbers as input:
p = ProxySpace.push(s.boot);
~out = { SinOsc.ar(~a.kr * Rand(1, 2), 0, 0.1) };
~out.play;
~a = 900;
// these add up:
~a[0] = 440;
~a[1] = 220;
~a[2] = 20;
~a.fadeTime = 2;
~a[0] = 300; // now there is a crossfade.
~a[1] = { SinOsc.kr(5, 0, 20) };
~a[2] = { SinOsc.kr(30, 0, 145) };
// internally a numerical input is approximately replaced by:
// (pseudocode)
SynthDef("name", { arg out, fadeTime;
Out.kr(out,
Control.kr(Array.fill(proxy.numChannels, { the number }))
* EnvGate.new(fadeTime:fadeTime)
)
});