Binary messages


The pattern for a binary message is


RECEIVER OPERATOR OPERAND

For example


2 * 3

is a receiver (the object to which a message is sent), a binary operator, and an operand.


////////////////////////////////////////////////////////////////////////////////////////////////////


Mixing = addition


Use addition (a binary operation) to mix two or more ugens.


(

// mix 2 sawtooth waves

{ 

Saw.ar(500, 0.05) // receiver

+ // operator

Saw.ar(600, 0.06) // operand

}.scope;

)



(

// mix 3 unit generators.

{ 

Saw.ar(500, 0.05) // receiver

+ // operator

Saw.ar(600, 0.06) // operand

// when evaluated produce 

// a BinaryOpUGen

// this BinaryOpUGen is then a receiver for an

+ // addition operator followed by

Saw.ar(700, 0.07) // an operand

}.scope;

)


////////////////////////////////////////////////////////////////////////////////////////////////////


Rewrite the previous example with the Mix ugen.


(

{ 

Mix.ar(

// the ugens that will be mixed go into an array

[ 

Saw.ar(500, 0.05),

Saw.ar(600, 0.06), 

Saw.ar(700, 0.06) 

]

) 

}.scope

)


Or use Mix.arFill to create the same result. 


{ Mix.arFill(3, { arg i; Saw.ar(500 + (i * 100), 0.05) }) }.scope;


Every time the function is evaluated, the argument i is incremented. So i equals 0 the first time the function is evaluated, i equals 1 the second time, i equals 2, the third time, and so on.


////////////////////////////////////////////////////////////////////////////////////////////////////


Scaling = multiplication


Apply an envelope, in the form of a low-frequency sine wave, to a WhiteNoise generator. 


{ WhiteNoise.ar(0.1) * SinOsc.kr(1, 1) }.scope;


(

// scaling and mixing

// ... imitates a train?

{ 

(WhiteNoise.ar(0.1) * SinOsc.kr(1, 1))

+

(BrownNoise.ar(0.1) * SinOsc.kr(2, 1))

}.scope;

)


////////////////////////////////////////////////////////////////////////////////////////////////////


Envelopes


Dynamically modulate any parameter in a ugen (such as frequency, phase, or amplitude) with an envelope.


// modulate amplitude

{ SinOsc.ar(440, 0, 0.1) * EnvGen.kr(Env.sine(1), doneAction: 2) }.scope;


Setting the doneAction argument (control) to 2 insures that after the envelope reaches its endpoint, SuperCollider will release the memory it used for the instances of the SinOsc and the EnvGen. 


////////////////////////////////////////////////////////////////////////////////////////////////////


Keyword arguments


Keywords make code easier to read and they allow arguments to be presented in any order. Here, the doneAction and the timeScale arguments are expressed in keyword style. 


(

SynthDef("timeScale", { arg ts = 1;

Out.ar(

0,

SinOsc.ar(440, 0, 0.4) 

* 

EnvGen.kr(

Env.sine(1), 

doneAction: 2, 

timeScale: ts // scale the duration of an envelope

)

)

}).load(s);

)


Synth("timeScale", [\ts, 0.1]); // timeScale controls the duration of the envelope


////////////////////////////////////////////////////////////////////////////////////////////////////


// scale the duration of the envelope for every new synth

(

r = Routine({

loop({

Synth("timeScale", [\ts, 0.01.rrand(0.3)]);

0.5.wait;

})

});

)

r.play


////////////////////////////////////////////////////////////////////////////////////////////////////


Additive Synthesis


Additive synthesis is as its name says. Components are added (mixed) together.


(

{ // evaluate the function 12 times

var n = 12;

Mix.arFill(

n,

{ 

SinOsc.ar(

[67.0.rrand(2000), 67.0.rrand(2000)],

0, 

n.reciprocal * 0.75

)

}

)

*

EnvGen.kr(Env.perc(11, 6), doneAction: 2)

}.scope

)


////////////////////////////////////////////////////////////////////////////////////////////////////


Envelopes


The promise of additive synthesis is that one can add sine waves to create any sound that can be imagined. 


The problem of additive synthesis is that each and every sine wave and their envelopes have to be specified explicitly.


Create nuanced textures by scaling sine waves with envelopes and then mixing the result.


(

{ var n = 12;

Mix.arFill(

n, // generate n sine waves

{ 

SinOsc.ar( // each with a possible frequency between

[67.0.rrand(2000), 67.0.rrand(2000)], // low.rrand(high) ... floating point values

0, 

n.reciprocal // scale the amplitude of each sine wave

// according to the value of n

)

*

EnvGen.kr( // put an envelope on each of the sine waves

Env.sine(2.0.rrand(17)), 

doneAction: 0 // deallocate envelopes only when the

// entire sound is complete (why?)

)

}

)

* // put an envelope over the whole patch

EnvGen.kr(

Env.perc(11, 6), 

doneAction: 2, 

levelScale: 0.75

) 

}.scope

)


(Or use the Klang ugen to produce a similar effect).


////////////////////////////////////////////////////////////////////////////////////////////////////


Ring modulation


Multiply two UGens.


{ SinOsc.ar(440, 0, 0.571) * SinOsc.kr(880) }.scope


// use an lfo to modulate the amplitude of the modulator

(

{ 

SinOsc.ar(440, 0, 0.571) 

* 

(SinOsc.kr(880) // wrap the modulator and the lfo in parenthese

* // why ... ?

SinOsc.kr([6.99, 8.01].reciprocal)

)

}.scope

)


////////////////////////////////////////////////////////////////////////////////////////////////////


Amplitude modulation


Multiply two UGens and restrict the value of the modulator to positive values (use the .abs message to calculate 'absolute' value) to create what Charles Dodge calls "classic" amplitude modulation.


// use an lfo to modulate the amplitude of the modulator

(

{ 

SinOsc.ar(440, 0, 0.571) 

* 

(SinOsc.kr(880).abs // wrap the modulator and the lfo in parenthese

* // why ... ?

SinOsc.kr([6.99, 8.01].reciprocal)

)

}.scope

)


////////////////////////////////////////////////////////////////////////////////////////////////////


Compare "classic" amplitude modulation and ring modulation


// "classic"

{ SinOsc.ar(440, 0, 0.571) * SinOsc.kr(880).abs }.scope


// "ring"

// ... what's the difference?

{ SinOsc.ar(440, 0, 0.571) * SinOsc.kr(880) }.scope


////////////////////////////////////////////////////////////////////////////////////////////////////


go to 10_Subtractive_synthesis